Enabling a Giant Segmented Mirror Telescope
for the Astronomical Community

Conception of GSMT Enclosure

Gemini Logo

Table of Contents


Executive Summary

1. Enabling the GSMT

2. Science Case for a GSMT
2.1. Large Scale Structure
2.2. Galaxy Formation
2.3. Resolved Stellar Populations
2.4. Planet Formation Environments
2.5. High Dynamic Range Science
2.A. NOAO Panel Workshop on Science with the GSMT (PDF)
2.B. Galaxy Evolution and Large Scale Structure Science Case for a GSMT (PDF)
2.C. Stellar Populations (PDF)
2.D. Star and Planet Formation with a GSMT (PDF)

3. Science Requirements

4. The Point Design
4.1. System Design Strategy
4.2. Requirements Flowdown and Error Budgets
4.3. Enclosure
4.3.A. AMEC Feasibility Study Report (PDF)
4.4. Telescope Structure
4.4.A. Strawman Structural Design of a 30-m GSMT (PDF)
4.4.B. Conceptual-Level Cost Estimate for Point Design (PDF)
4.5. Optics
4.5.A. Optical Prescription (PDF)
4.5.B. Image Motion and Image Quality of the GSMT Optical System (PDF)
4.5.C. Conceptual Design of Primary Mirror Segment Support System of the GSMT Point Design (PDF)
4.5.D.Design Study For Testing primary Mirror Segments From A 30-M GSMT Using A Test Plate With Computer Generated Hologram CGH (PDF)
4.5.E. Lab Demonstration Of Interferometric Measurement Using A Test Plate and CGH (PDF)
4.6. Adaptive Optics
4.6.1. Introduction
4.6.2. MCAO
4.6.A. Preliminary Results on Ground Conjugate, Wide Field AO (PDF)
4.6.B. Efficient Computation of Minimum Variance Wavefront Reconstructors using Sparse Matrix Techniques (PDF)
4.6.C. A Multigrid Preconditioned Conjugate Gradient Method for Large Scale Wavefront Reconstruction (PDF)
4.6.D. A Wave Optics Propogation Code for Multi-Conjugate Adaptive Optics (PDF)
4.7. Instrumentation
4.7.1. Wide-Field Multi-Object Multi-Fiber Optical Spectrograph (MOMFOS)
4.7.2. Near-Infrared Deployable Integral Field Spectrograph (NIRDIF)
4.7.2.A. OH Suppression - Current Status and Future Prospects (PDF)
4.7.3. Infrared Echelle Spectrographs
4.7.4. MCAO-fed near-IR Imager
4.7.5. Million Element Integral Field Spectrograph (MEIFU)
4.7.5.A MEIFU Final Report (PDF)
4.7.5.B Presentation 1 (PDF)
4.7.5.C Presentation 2 (PDF)
4.7.5.D Presentation 3 (PDF)
4.7.5.E Lyman Alpha Surface Brightnesses (PDF)
4.7.5.F Calculations (PDF) High Dynamic Range Imaging and the GSMT Design of a Narrow Field AO Coronagraph
4.7.6.A. Dynamic Range Limits on Large Segmented Mirror Telescopes (PDF)
4.7.7. High Resolution Optical Spectrograph
4.8. Control Systems
4.8.A. GSMT Primary Mirror Deformation due to Wind Load (PDF)
4.8.B. GSMT Image Quality Degradation due to Wind Load (PDF)
4.9. Performance Evaluation
4.10. Cost Estimate for Point Design

5. Technical Studies
5.1. Introduction
5.2. Site Testing and Selection
5.3. Sodium Layer Testing
5.4. Cost Effective Mirror Fabrication
5.5. Characterization of Wind Loading
5.5.A Implications of the Nobeyama Wind Testing Results for the GSMT (PDF)
5.5.B Wind Loading Animations
5.5.C Wind buffeting effects on the Gemini 8m primary mirrors (PDF)
5.5.D Characterization of Wind Loading of Telescopes (PDF)
5.6. Adaptive Optics
5.7. Design-to-Cost

6. Program Plan
6.1. Next Steps
6.2. Draft Plan for the GSMT Design and Development Phase

7. Waikoloa SPIE Papers

List of Contributors | List of Acronyms

The New Initiatives Office is a partnership between two divisions of the Association of Universities for Research in Astronomy (AURA), Inc.: the National Optical Astronomy Observatory (NOAO) and the Gemini Observatory.

NOAO is operated by AURA under cooperative agreement with the National Science Foundation (NSF).

The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).

October 2002